Received 28 January 2005 Accepted 1 February 2005

Online 5 February 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Viktor Vrábel,^a* Jozef Kožíšek,^b Štefan Marchalín^c and Zdirad Žák^d

^aDepartment of Analytical Chemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, ^bDepartment of Physical Chemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, ^cDepartment of Organic Chemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and ^dDepartment of Inorganic Chemistry, Masaryk University, Kotlářska 2, CZ-611 37 Brno, Czech Republic

Correspondence e-mail: vrabel@cvt.stuba.sk

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(\text{C}-\text{C}) = 0.002 \text{ Å}$ R factor = 0.037 wR factor = 0.114 Data-to-parameter ratio = 17.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5,6,7,8-Tetrahydro-4a*H*-thieno[3,2-*b*]quinolizin-4(10*H*)-one

In the title compound, $C_{11}H_{13}NOS$, the thiophene ring is planar while the central six-membered ring has a half-chair conformation and the second ring of the quinolizine moiety is in a chair conformation. The angles at the N atom sum to 331.22° , indicating pyramidalization of this atom.

Comment

Hydroquinolizine derivatives continue to atract the attention of organic and medicinal chemists because of their potential application as pharmaceutical drugs for the treatment of diabetes (Kubo *et al.*, 2000). Benzoquinolizine derivatives are interesting as selective non-steroidal inhibitors of steroid 5 α reductase-1 (Guarna *et al.*, 2001). Selective inhibition of 5 α R-1 is currently investigated as a potential therapeutic tool for the treatment of dihydrotestosterone-related skin disorders, such as acne, alopecia, male baldness and hirsutism (Harris & Kozarich, 1997). X-ray crystallographic analysis was undertaken to determine the structure and stereochemistry of the title compound, (I).

The X-ray analysis shows that the molecule consists of a thiophene ring fused to a quinolizine moiety (Fig. 1). The central ring (atoms N12, C9, C13, C10, C4 and C11) is in a half-chair conformation (Cremer & Pople, 1975). The sp^3 hybridization of atom N12 is confirmed [the sum of the bond angles

Figure 1

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Displacement ellipsoids are drawn at the 50% probability level. around N12 is 331.22°]. The second ring of the quinolizine moiety (atoms N12, C11, C5, C6, C7 and C8) assumes a chair conformation. The ring is puckered in such a manner that atoms C5, C6, C8 and N12 are coplanar to within 0.009 (2) Å, while atoms C7 and C11 are displaced from this plane on opposite sides, with out-of-plane displacements of 0.667 (2) and 0.661 (1) Å, respectively. The metrical parameters of the quinolizine moiety are comparable with those in similar structurally related compounds (Hussain et al., 1996; Beckwith et al., 1995).

Experimental

The title compound, (I), was prepared by intramolecular acylation of N-[(2-thienyl)methyl]-2-piperidinecarboxylic acid hydrochloride in polyphosphoric acid (Marchalín & Decroix, 1994). Colorless prismatic single crystals were prepared by recrystallization from cyclohexane.

Crystal data

C ₁₁ H ₁₃ NOS	$D_x = 1.357 \text{ Mg m}^{-3}$
$M_r = 207.28$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 2238
a = 6.808 (2) Å	reflections
b = 18.770 (9) Å	$\theta = 2.3-34.1^{\circ}$
c = 8.256 (3) Å	$\mu = 0.28 \text{ mm}^{-1}$
$\beta = 105.84 \ (3)^{\circ}$	T = 298 (2) K
$V = 1014.9 (7) \text{ Å}^3$	Prism, colorless
Z = 4	$0.60 \times 0.50 \times 0.30 \ \mathrm{mm}$
Data collection	
Kuma KM-4 CCD diffractometer	$R_{\rm int} = 0.034$
ω scans	$\theta_{\rm max} = 27.1^{\circ}$
Absorption correction: none	$h = -8 \rightarrow 8$
8775 measured reflections	$k = -24 \rightarrow 0$
2238 independent reflections	$l = -10 \rightarrow 5$

Refinement

1765 reflections with $F^2 > 2\sigma(F^2)$

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0629P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.037$	+ 0.1855P]
$wR(F^2) = 0.114$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
2238 reflections	$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
128 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
-	Extinction coefficient: 0.0060 (19)

Table 1

Selected	geometric	parameters	(A,	°)).
----------	-----------	------------	-----	----	----

C2-S1	1.7214 (19)	C9-C13	1.489 (2)
C4-C10	1.454 (2)	C10-C13	1.362 (2)
C8-N12	1.4687 (19)	C11-N12	1.4660 (18)
C9-N12	1.4617 (18)	C13-S1	1.7062 (16)
C6-C5-C11	111.40 (13)	C13-S1-C2	91.57 (8)
C7-C6-C5	109.77 (13)	C9-N12-C11	111.62 (11)
C13-C10-C4	119.51 (13)	C9-N12-C8	107.99 (12)
C10-C13-C9	123.30 (13)	C11-N12-C8	111.51 (12)
C5-C6-C7-C8	54.5 (2)	N12-C9-C13-S1	-156.27 (11)
O14-C4-C10-C3	-2.1(2)	C9-C13-S1-C2	179.76 (14)
C10-C4-C11-N12	-27.47 (16)	C5-C11-N12-C8	-57.20 (16)

H atoms were positioned geometrically and treated as riding atoms (C-H = 0.95-0.99 Å) with U_{iso} set to $1.2U_{eq}$ of the parent atom.

Data collection: KM-4 Software (Kuma, 1992); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

This work wos supported by the Grant Agency of the Slovak Republic (grant Nos. 1/2456/05 and 1/2449/05).

References

- Beckwith, A. L. J., Joseph, S. P., Mayadunne, R. T. A. & Willis, A. C. (1995). Acta Cryst. C51, 2307-2309.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1362.
- Guarna, A., Occhiato, E. G., Machetti, F., Trabocchi, A., Scarpi, D., Danza, G., Mancina, R., Comerci, A. & Serio, M. (2001). Bioorg. Med. Chem. 9, 1385-1393.
- Harris, G. S. & Kozarich, J. W. (1997). Curr. Opin. Chem. Biol. 1, 254-259.
- Hussain, Z., Fleming, F. F., Norman, R. E. & Chang, S. C. (1996). Acta Cryst. C52, 1296-1298.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kubo, H., Kobayashi, J., Higashiyama, K., Kamel, J., Fujii, Y. & Ohmiya, S. (2000). Biol. Pharm. Bull. 23, 1114-1117.
- Kuma (1992). KM-4 Software. Version 6.0. Kuma Diffraction, Wrocław, Poland
- Marchalín, S. & Decroix, B. (1994). J. Heterocycl. Chem. 31, 495-499.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.